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Abstract
Thepresentpaperisastudyofaerodynamicnoisespectra
frommodelfunctionsthatdescribethesource.Thestudy
ismotivatedbytheneedtoimprovethespectralshapeof
theMGBKjet noisepredictionmethodologyat high
frequency.Thepredictedspectralshapeusuallyappears
lessbroadbandthanmeasurementsandfasterdecayingat
highfrequency.Theoreticalrepresentationofthesourceis
basedonLilley'sequation.Numericalsimulationsofhigh-
speedsubsonicjetsaswellassomerecentturbulence
measurementsreveala numberof interestingstatistical
propertiesof turbulencecorrelationfunctionsthatmay
haveabearingonradiatednoise.Thesestudiesindicate
that anexponentialspatialfunctionmaybe a more
appropriaterepresentationof a two-pointcorrelation
comparedtoitsGaussiancounterpart.Theeffectofsource
non-compactnessonspectralshapeis discussed.It is
shownthatsourcenon-compactnesscouldwellbe the
differentiatingfactorbetweentheGaussianandexponential
modelfunctions.In particular,thefall-offof thenoise
spectraathighfrequencyisstudiedandit isshownthata
non-compactsourcewithanexponentialmodelfunction
resultsin abroaderspectrumandbetteragreementwith
data.A recentsourcemodelproposedbyTamet al. that

represents the source as a covariance of the convective
derivative of fine-scale turbulence kinetic energy is also
examined.

1. Introduction

A physics-based methodology utilizing the averaged

equations of motion is used to assess jet noise spectra as a
function of the source model function. The focus here is on

small-scale turbulence noise that dominates the spectra at
subsonic Mach numbers. It is generally accepted that

sound generation in jets is a by-product of the unsteady
features of the flow. Any flow manipulation intended to
reshape the spectra and subsequent perceived noise level
ought to affect the unsteady characteristics of the flow.

Mixing enhancement devices such as chevrons and tabs are
known to alter turbulence statistics 1 and change the time-

and length-scales of noise generating eddies. These flow
modifications directly impact the sound field by, for

example, reducing the low-frequency noise at the cost of
adding to the high-frequency content.

As such, it is not unreasonable to argue that modeling of the
unsteady behavior of the flow as supported by a number of
isolated test configurations may not lead to a reliable
prediction tool. In an ideal situation, one might attempt to
solve the full compressible Navier Stokes equations without
resorting to any modeling closures. In fact, it is simply a
matter of time before Direct Numerical Simulations (DNS)

should solve the far-field jet acoustics either directly or by
some extension of the near-field solution 2. Clearly, the

computational demands of a typical high Reynolds number
jet leave little room, at least in the near future, for DNS as a
design code. Nevertheless, it could be an extremely useful
tool in understanding the unsteady features of the jet in order
to improve the source modeling.

On the other hand, the computational requirements are
greatly reduced if the governing equations are spatially
filtered, as is done in the Large Eddy Simulation (LES) [e.g.,
Ref. 3, 4, 5], and the effect of subgrid scales (SGS) is
modeled. This approach is successful in capturing the
distinct directivity of supersonic jets that results from large
scales of motion (instability waves) and dominates the
general noise picture near the down-stream axis. But it might
also suffer from a neglect of high-frequency noise resulting
from subgrid scales. A recent study by Seror et al. 6calculates
the acoustic pressure from the filtered Lighthill's stress tensor
as well as the full tensor and concludes that the SGS part of
the tensor needs to be taken into account in order to recover

reliable high-frequency results. One must also be careful
about the selection of the subgrid scale eddy viscosity model
e.g., constant vs. dynamic Smagorinsky coefficient, as well as
the inflow perturbations used in the simulation. LES
predictions of Morris et al. 3 appear to benefit from the
dynamic model and narrow down some of the usual over-
predictions in turbulence and noise.

Physics-based prediction methods such as MGBK 7 or Tam
and Auriault's s fine-scale model heavily rely on model

functions that express the statistical properties of noise
sources. These predictions use the averaged equations of

motion; hence the unsteady features of the flow are entirely
described by two-point, space-time correlation models. Any
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shortcomingin thepredictionsshouldbedirectlylinkedto
themodel. Otherphenomenasuchasrefractionand
convectionimpactthedirectivityofjetnoise.

Woodruffel al. 9 study the isotropic source model in the
original MGBK noise prediction methodology 1° and

examine alternative representations for the turbulence
spectra. They propose an energy spectrum function for the
two-point velocity correlation to satisfy the Kolmogoroff 11

spectrum law in the inertial sub-range. In particular, they
examine a wave-number-dependent Gaussian function for
the temporal part of the correlation, as opposed to the usual
separable space and time functions. Here the characteristic
frequency is scaled based on the spatial wave-number k and

the turbulence dissipation rate _ as "Co 1 _ k213ew 113. The

predicted spectra do not appear to offer noticeable
improvement over the conventional MGBK methodology
that uses a separable correlation function and calculates a
characteristic frequency from the turbulence kinetic energy

_cas "Co 1 _ _" / g. Nonetheless, near 90 ° angle, they report

slight improvement in their spectral shape.

Tam et al. s model their source as a two-point correlation of
the convective derivative of kinetic energy of small-scale
turbulence. They use RANS to calculate the time- and
length-scales of the noise sources as is done in the MGBK,

and predict noise spectra in good agreement with data at
mid angles.

In all, the noise from small scales of motion, which are
usually broadband in nature and cover a range of observer
angles, remains a significant part of the jet noise spectra.
Indications are that at high subsonic Mach numbers, and

heated jets in particular, instability-associated noise may
dominate the low end of the spectra at shallow angles. On

the other hand, one might argue that the mean-flow effects
could also play a role, by diverting the high-frequency
noise of small-scale turbulence away from the axis and
creating a region near the zone of silence that is dominated
by low-frequency noise.

In this work, alternative representations of the source in
modeling the quadrupole terms of Lilley's equation are
examined. We concentrate on 90° emission angle where

shear-noise is not a factor and the spectral shape is
predominantly defined by the self-noise component.

The paper begins with some preliminary formulation of the
governing equations. Section 2.2 derives expressions for
source and non-compactness factor as a function of the
proposed models. It is shown that the fall-off of the high-
frequency noise becomes less steep when an exponential
spatial function with an appropriate temporal function is
selected and non-compactness effects are included. Section
3 compares Tam and Auriault's model s with the MGBK

model as proposed in Ref [7]. It concludes that the spectral

shape at 90° should be identical if consistent assumptions are
used. Some concluding remarks on future directions for a
physics-based modeling approach is given in the summary.

2. Sound Spectral Density
Application of Lilley's equation to the problem of jet noise

and the significance of various source terms has been the
subject of numerous discussions in aeroacoustics. In a recent
article, Goldstein 12gives an exact form of the equation with

the dependent variable defined such that the source is of
quadrupole/dipole nature. The quadrupole source is second-

order in velocity fluctuations and is the sum of the commonly
known self- and shear noise terms. The dipole term is

produced by the fluctuating sound speed due to temperature
fluctuations.

The far-field spectral density due to sources of Lilley's
equation may be expressed as integration over the source volume

p2(X 10))= f f G*(x, y-_ / 2, 0))G(2, _ + _ / 2, 0))Q12 (y, _, 0) )

94

xd_dy. (1.1)

G is an appropriate Green's function, * denotes a complex
conjugate, and 012 is the source spectral density which is
formed from a Fourier transform of a two-point space-time

correlation between source points Yl = 9-5/2 and

Y2 = 9 _- 5 / 2 separated by time r

Q12(9, 5,0))= fR(Se,{,r)e'°_dr. (1.2)

M

If we assume that the variation of the magnitude of the

Green's function with respect to 5, within the source region

where Q12 is non-zero, is negligible compared to that of its
phase then

G*(S, 9 -- 5 / 2, o))G(s, 9 _- 5 / 2, 0)) _ IG(s, Y' 0))12 e ik._, (1.3)

where /_ is a wave number of magnitude (0)�aM) and direction

(2 - f). Here (ois the frequency at the observer location and aM

denotes the ambient sound speed. Equation (1.1) is now written as

p2(210)) = flG(x,y,0))[ _M_ d_[ffe(y, 5,_[f)e ik_dSd 9 . (1.4)

It is argued that changes in retarded time across a correlation volume
element are more likely to be small it"the correlation is written in a

frarre 2' moving with convection velocity Uc (i.e. 2' = 2 - iUt)

of the turbulent eddies. Experimentally, the correlation R(y, 5, r)in

a jet flow describes a fluctuating pattern in a moving frame and is
expressed as
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R(_V,_,'c) = R (_V,_,,,'c), _, =_-/'Uff. (1.5) (2.4)

Source frequency f2 is related to the observer frequency

through the usual Doppler effect f2 = co(1-M cos0).

Making a transformation to the moving frame, we find

-k. _ + arc = -/_. _,, + f2r, therefore

+_ +_

(1.6)

Now the noise spectral density with respect to the moving frame
is given as

4,,,

×d_,dy. (1.7)

2.1 Self Noise Spectra

For brevity, subscript m is suppressed in this section, and _ is

used as the separation vector with respect to the moving flame.

To assess the far-field mean-square pressure due to the self-noise
term only, we write Lilley's equation in a coordinate ._' reeving

with convection velocity Uc

O (uiuj)

L(p_e_.;V,xl) = D p OxiOx,_ (2.1)

Here L is Lilley operator, V= U- Uc, and the density p has been

moved to the right of operator D = _ / _t + V0 / _x'1assuming

that flow is locally parallel and that density fluctuations are small
so p is the mean density. The Green's function to the above

equation for a source of type D{e _'5(2' - x'o) }is

L(Se _r_';V, X'l) _r_' '=D{e 5(Xl)5(q)-q)o)5(r-r)/r }. (2.2)

In the high frequency limit, S is given as

/1/2
1 ao/a _ C_

S(f, _, f2) - 4zR (1 - M cos 0)(1 - M ° cos 0) k, rgo J

xe' <exp{i--[Jo (g-g=)dr-_ocos(qg-qgo)] } (2.3)
aM

where

= i g(r, O)dr.
0

Subscript o refers to source location and the shielding function
g(r, O) is defined in Appendix A.

The above expression for S is applicable outside the zone of silence

of a source only, where the shielding function g: (r, 0) is positive at

all radial positions; hence there is no shielding. The acoustic
pressure due to the above source and Green's function becomes

p,e.(X',t)= S(X',t;fe, tl) p '_ dtldf; '

S(2', t; y, t1) is the inverse Fourier transform of S(2', y, co)

(2.5)

1 +_

= , y, _)e ' a_ (2.6)

Upon transferring the derivatives from the source to the Green's
function in (2.5), and making the approximation that the variation of
the magnitude of the Green's function S(Y, y, co) with respect to

separation vector _ within the source region is negligible compared

to that of its phase, we find

p,e_.(210))2 = f IS,_j (fc',f:,_2)S,kz (fc',f:,_2)lI_jkz(f:,_2)df:.

(2.7)

Subscripts on S refer to derivatives with respect to source

coordinate _, and the phase factor e '_¢ is now included with

the source correlation /_jk_. In addition, we have neglected

the mean density gradients so that density p is included
within source correlation function

I_j_,(_,_) : p2 j _ (u_u_)(u;ul) e _._e_mdvd_ (2.8)

The volume integration in (2.7) usually includes the most energetic
parts of the jet. For axisymmetric jets, the directivity factor may be

averaged azimuthally with respect to source and observer
circumferential angles to obtain a ring-source directivity factor,

a_jkz. Subsequently, jet volume integration will be limited to radial

and axial coordinates

+)T+)T

ai_z - IS i_S _1 dq_q) o (2.9)
4:rc2

pe(Xlco) = IIaijkzlijk_,(y, f2)(21rrdrdYl). (2.10)
--_ 0
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Equation(2.10)iswritteninanexpandedformforaunitring-
sourcevolumeatpoint
Z (selfNoise) = Illllallll -}-I2222a2222+ I333383333-}- 2Ii12281122

q- 41121281212 + 21113381133+41131381313 + 21223382233 + 41232382323,

(2.11)

Directivity factors auk_, and shielding coefficients j3U are

defined in Appendix A. In axisymmetric jets,

82222 = 83333 , 81212 = 81313 = 81122 = 81133 ,

a2233 z a2323

At 90 ° (2.1 1) simplifies

_, (Self Noise)= 21222282222 + 2(I2233 + 212323 )82233 ,

0= 90 ° . (2.12)

At this point, a physics-based modeling approach is employed to
obtain closed-form expressions for the correlation coefficients
appearing in (2.11) and (2.12). For convenience, we assume that
the joint probability distribution of velocities u and u' at points

and _' (separated in space and time) is normal and write the

fourth-order cross-correlation function as a superposition of
second-order correlations 13. In addition, the second-order

correlation is assumed separable, i.e., uiu'; =R_(_)g(r).

R_(_) and g(r) denote the spatial and temporal parts ofHere

the correlation, respectively. From (2.8), the axial correlation
coefficient becomes

2 2 _ i/_.4

/llll(Y,_ ) z 2 0 G(_2)IRll(_) e d_,

4

+oo

G(_) = I 82 (r)eimdr.

In homogeneous isotropic turbulence,
correlation function has the form 11

(2.13)

the two-point

m 1 ,

R,(_) = u2[(f +@_f')ai,-2f _,/_]. (2.14)

In the following discussion we examine Gaussian as well
as exponential spatial functions f(4).

2.2 Compact Eddy Approximation
In a compact eddy approximation, the assumption is made that
the eddy length-scale 1is much shorter than the wavelength of the

acoustic disturbances, i.e. go1/ a is small compared to unity. As

such the factor e _v¢ is set equal to unity, which practically

amounts to setting the wave number equal to zero. Thus the four-
dimensional transform (2.8) simplifies.

+_

4_

(compact-eddy). (2.15)

Using an appropriate model in (2.13) with k = 0 one finds

1 272

a. Illll(Y,_'_) =-_j0 (U 1 ) _3@(_-_),

4 2 2)2b. 11111 (9, _'_) -- -- jO (U 1 _3@(_-_),

-- 5_2

f(4) = exp(-z@)

f(4) = exp(-z-_)

m

= 1 j02 4242

e" 11111(Y'f2) 2_- (tt2)2 _1822G(f2) ' F(_) = exp {-:rg(_-2 + _23 ) }_1 f2

-- 41_IU÷ 42__ 4 2( 2)2_1_22 _(_'_), F(_) = exp{-rc _ }
d. Illll(Y,n) - 5T_ 2 jo V e; _22

(2.16)

with _223 = _2__2 _23. Models (a) and (b) assume isotropic

turbulence, whereas (c) and (d) use an axisymmetric

turbulence constructed from a set of kinematically compatible

scalar functions [Ref .7]. Length-scales 81 and ge are

proportional to (u_)3_2/e and (u_)3_2/e, respectively.

Consider the isotropic model, cases (a) and (b). After
substituting the remaining correlation coefficients into (2.12)
(see Appendix B) we find

Z(Self Noise) = 2(a2222 -}-a2233)Ii111 . 0 = 90 ° (2.17)

The shielding coefficients /_ that multiply directivity factor

a_k, result in noise attenuation within the zone of silence. At

90 ° emission angle, f2 = m, and the shielding function is

g2(r) = (a/a) 4, where a is the sound speed at the source.

Here g2 (r) has no zero crossing, therefore there is no turning

point and/_ = 1.

_,,(Self Noise) =ISI 2 k4(a_)411111, 0 = 90 ° (2.18)
a

Away from 90° equation (2.11) should be used directly. In
addition, the shear noise contribution needs to be included as
described in Ref [7]. Model (c) shows that the directivity of
jet noise with respect to its level at 90 ° is a function of
anisotropy of turbulence 7

NASA/TM--2002-211696 4



Let7° be the inverse of the characteristic source frequency,

which is proportional to turbulence kinetic energy and its

dissipation rate as 7 ' = f2 = _z e / _¢. Eddy length-scale is

obtained from _ - 7ou' . At this point noise spectrum at 90°

may be calculated using models (a) or (b) in (2.18) and
with an appropriately selected proportionality factor for g.
It is clear that the spectral shape will be the same for both
models. For instance, if the proportionality factor selected
for length-scale f in model (b) was larger than that of

model (a), say by factor (57_ 2 /8_-) 1/3, then identical

spectra are obtained.

Upon examining the three-dimensional energy spectrum for

a two-point correlation Rij (_) using models (a) and (b), it

is found that both scale as fourth power of spatial wave
number when wavelength is large. However, in the inertial
sub-range, their decay rate is substantially different. The
energy spectrum function, normalized with respect to

(1.5 2u1 ), is given as

E(k) -

E(k) =

(_ (k_) 4 k:t: _

exp(---), f(_) = exp(-a" _)12a" (4a'): 4a"

16f (k_ / ;re) 4
f({) = exp(-zc--_).

k2{_2 3 '

3zr2 (1 + _)
;re

(2.19)

Figure 1 shows that the energy spectrum for the

exponential function (model b) decays as k 2 at large
spatial wave number. This is reasonably close to the

proposed Kolmogoroff's k4/3scaling law 11. Model (a),

however, presents a much faster decay rate. These
comparisons suggest that when non-compactness effects
are accounted for, the two models, if properly used, should
produce different spectral decay at high frequency (this will
be shown in section 2.4).

Reference [11] argues that the exponential function may
not be strictly correct on the grounds that (1) it is not

parabolic at its vertex, (2) the lateral correlation UlU 1 with

in direction of 42 remains positive for all 42; whereas

the correct curve must become negative for large 42.

Recent measurements of Bridges et al.14 appear to suggest

that a two-point correlation R j(4) constructed from an

exponential spatial function according to (2.14) provides a
better fit to data relative to the Gaussian function (Fig. 2).

2.3 Source Non-Compactness
Here we explore the effect of source non-compactness on
noise spectra using Gaussian and exponential models (a) and

(b). To carry out the integration with respect to 4 in (2.8) or

(2.13), a convenient coordinate transformation has one of the

axes 4i aligned with vector/7.

In a spherical coordinate _ = { (coso_, sin o_cosqg,

sing sinqg), 41 is aligned with wave number /7 such that

k. 4 = k4 cos a. Equivalently, one might select a cylindrical

coordinate system _ = (41, rcosq_, rsinq_) with 41 in the

direction of /_ such that /7._ = k41. In any event, when

turbulence is isotropic, the final result should be independent
of the direction of wave number k. Now

with f ({) = exp(-zr42 / ,?2) we find

1 2 --7 2 k2_2

11111@,f_) = --------_p (u I ) g3G(f_)N(kf), N(kg) = exp(- --)
2-q2 8_

(2.20)

whereN(kf) denotes the non-compactness factor. Using an

exponential function f(4) = exp(-zr4 / G,) we find

4 2_23

Illll(Y '_')) : 7P ("1) (_ G(f2)N(kg),

kg 5(kf)2 +12

N(kt) = 20(_----)s [3tan 1( kg ) --2 :re
k_ 2_" _" // kt 2 ",2 ] (2.21)

/(7) +4)

Applying the law of limits repeatedly, the last expression
forN(kg) becomes 1 as kg approaches zero. Figure 3 shows

that the non-compactness factors equal 1.0 for 0 _<kg < 2 and

decay rapidly for kg > 7. The Gaussian function appears to
produce a faster-decaying non-compactness factor. The
above non-compactness factors repeat for other correlation
coefficients as noted in Appendix B.

Since _ - "ffoUl, we find k( - (coz o)(U 1 / a ). Ratio u1 / a

is usually smaller than 1.0 (of the order of 0.2 for the more
energetic parts of the jet). In the compact eddy

approximation kg was assumed small henceN(k{,) was set
equal to 1.0 for the entire range of the wave number. As

frequency co becomes very large, oyr ° may be large enough

to reduce N below 1.0 (Fig. 3).

The implications are that the effect of N(kg) on spectra, if

any, should be a slower decay rate at high frequency for the
exponential function relative to the Gaussian. It is also

evident that both models produce a faster decay at high
frequency when the sources become non-compact. However,

NASA/TM--2002-211696 5



asweshallseeshortly,theseeffectsarevisibleonlyin the
contextof thespectralshapefunctionG(_)N(kg).If
G(_) hasalreadydecayedfarenoughbeforeN(k()takes
effect,thenbothmodelsproduceidenticalspectra.

Figure4 showstheMGBKpredictionusingGaussian-
isotropicsourcemodel(a). Theeffectof sourcenon-
compactnessonpredictednoisespectraforaMach0.5cold
jet isoftheorderof0.12dBatthehighendofthespectra.
Herethetemporalpartofthecorrelationwasselectedas 7

g(T) = exp{-4(ff / 2) 2 + (T / To) 2}. (2.22)

Constant o- = 0.8 as was originally proposed in Ref [7].
One might expect a similar effect at other angles,

asN(kg) is a common factor throughout Eq. (2.11).

Next we explore the MGBK spectral shape function.

2.4 Spectral Shape Function

Apart from factor k 4, which appears due to transfer of
derivatives from source to the Green's function (not

included in the following discussion), the spectral shape

function, denoted as /_ll(coT:o), is simply the product

g(_)N(kg). Function g(_) is obtained from (2.13) and

(2.22)

K1[0-41 + (_')_- / 2) 2 ]

?l(roro)= _ro o N(k_) (2.23)
1+ (_v ° / 2) 2

The normalized spectral function becomes

f11((OTo) = K1 [_Y41 + (_v ° / 2) 2 ]

41+(_Vo/2) 2 KI(O- )

f_ = go(1 - M Ccos 0).

N(k_).
(2.24)

As o- becomes very small one finds

f!im _ - 1 N(kg)
_o 1 + (_'_T ° / 2) 2

(2.25)

Figure 5 shows the spectral shape function /611(0)/:o) for

model (a), with g/(U'_o)=0.20, which applies to the

more energetic parts of the flow. Fig 5a shows a negligible
role for the non-compactness factor at O-= 0.80. The

effect of N(kg) becomes evident as shown in Figures 5b
and 5c. It should be noted that when O- --> 0 the compact
source model becomes increasingly inadequate (resulting in
unusually high level of noise at high frequency).

Comparison of the spectral shape functions of models (a)
and (b) shows a slower high- frequency decay for the
exponential model (Figs. 6a and 6b). Shown in

Fig. 7 is the MGBK predicted spectrum for Mach 0.5 cold jet
with O-= 0, including the non-compactness. Model (b)
predicts a broader spectrum and noticeable high-frequency
improvement relative to model (a). Here, the location of the

peak frequency was adjusted slightly by selecting

proportionality constant a 1, (7:o 1 = o_ 1 _/_') as 0.225 and

0.170 for models (a) and (b) respectively.

3. Tam and Auriault's Model

In reference [8], Tam et al. compute the fine-scale turbulence
noise from an equation similar to (1.4). Here we compare the
Green's function as well as the source cross correlation

functions between the MGBK model and Tam's approach.

3.1 Green's Function

The Green's function to the linearized Euler equations for a
locally parallel flow is the solution to

io)t

L(Ge ;U,x1) = e i°)t6(2-2s,) , (3.1)

where COdenotes source frequency with respect to stationary

frame X, Xs is the source location, and L is Lilley's operator.

Tam and Auriault 15 recast the problem into an adjoint

operator for the adjoint Green's function G, which is related

to the Green's function G of the original problem by a simple

switch of the source and observer locations 2 and 2o. The

final result for an axisymmetric mean flow (now multiplied

by 2 z a2 to compare with the high-frequency solution) is

given as

G(2o,2 ,CO) = G (2 ,2o,CO )

e ik(xcosO R)

Ga(2_,2o,CO ) - Zf,,(r)cosmq), < < R ° .
4zk a R .... o

(3.2)

Function f,(r) is obtained by solving an ordinary

differential equation and matching the above inner solution

with the outer solution at the jet boundaryR o .

G.(2,2o,CO) -
e ik(xcosO R)

Z [(-t) .,J., (Z) -_-AmHr(n 1) (Z)]
4zka R ., o

×cosmq_, r >_R ° (3.3)

where Z = kRo sin 0.

The corresponding high-frequency solution 16 for a non-
convecting (_ = CO) monopole type source takes one of the

following forms depending on the location of the source ro

relative to the zero crossing point r_of the shielding function,

i.e. g(r) = 0 (see Appendix A for the definition of g).
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G(_, y, (o) =
i a °/a

47ra kR (1- M ° COS0) 2

x exp( ik[I7 (g - g=)dr - g r ] - k[C_ - Co cos(_0 - _0o)1),

r < r (3.4)

with h 2 = _g2, C =f]h(r,O)dr

or

/1/2
i a /a Co ikR

G(2, y, go) = o _ e
47ra kR (I-M ° cos0): k.r g° j

xexp(ik[_o(g-g=)dr-Cocos(_o-_oo)]), r > r

(3.5)

C = f_g(r, O)dr.with

Figure 8 shows comparisons of the above Green's
functions for a stationary ring source at 7 diameters from

the jet exit (x/D = 7), and with radius r / D indicated as

a parameter. Computations were carried out for a range of

Strouhal numbers (St = fD/Uj) for a Mach 0.9 cold jet.

The agreement is generally good at high frequency. As the
Strouhal number is lowered, the high- frequency
approximation appears to deteriorate. Discrepancies
become increasingly visible near the boundary of zone of
silence as seen in figure 8c, with the adjoint Green's
function predicting a larger zone of silence. For our
purpose, we intend to compare the MGBK spectrum with

Tam's solution at 0 = 90 ° and assess the high-frequency
behavior. Spectral peak for both Mach 0.5 and 0.9 cold jets
is near St = 0.9, therefore the high-frequency solution is
found suitable.

It is noted that the Green's function for a monopole type

source scales as k 1 with respect to the wave number and

as 1 / (1 - M ° cos 0) 2 with respect to polar angle.

3.2 Source Model

Tam and Auriault s propose a two-point, fourth-order, axial

velocity correlation in a fixed reference frame

(Oqs(Xl,tl) Oqs(X2,t2))= q^_ --1_11Dt I Dr2 c2v _ exp{ Uv

_n 2

_ [(41- U_')2 -}- 4223 ]} (3.6)

with _ = 21 - 22, e_-= tl _ i2 , _23 as defined earlier, and

U the mean velocity at the source location, which can
be replaced with the source convection velocity. In this

section we use g as separation vector in a fixed reference
frame.

The corresponding axial correlation coefficient used in the
MGBK describes the cross correlation of the Reynolds stress

components rather than their convective derivatives.
Following the usual MGBK methodology, the fourth-order

correlation IlIII(_,_')----/(jOUIUI)(jOU'lU'l))is expressed as a

sum of second-order tensors. The element of /1111
2 _ 2

contributing to the noise field is simply 2R11(_)g (1:)

which, upon using model (a) in (2.14), and making a
transition to a fixed reference frame, becomes

-- _" 2 2 _"

Ii111(_,_') = 2pe(u2)2(1--77423) exp{- 2-77[(41-Uv)2

-}- 4223 ]}ge(T) (3.7)

and temporal function is given by (2.22).

Factor (1 - Jr _223/ _2 ) in (3.7) reduces Ii111(3' _") to zero as

the normalized lateral distance (_23 / g) approaches 1/,v/-_ - .

Beyond this point the correlation is practically zero.

In order to compare correlation functions (3. 6) and (3.7) on
an equal basis, suppose we relate time- and length scales and
define the following dimensionless parameters

2/r os_
e=(--) e , to=2 L, _,=4,1q, T=rlL.

gn 2

(3.8)

Now the lateral correlations, with zero time-delay, and
normalized in magnitude become

( Dq_(y'tl) Dq'(x +-_23't1)l= exp{-f_n2 _3} (3.9)
Dr 17 Dt I /

and

_/ 2- 2 2

11111(423,0): (1----423) exp{-gn2_223}. (3.10)
2

Figure 9a shows that (3.9) and (3.10) decay somewhat
differently. Tam and Auriault's correlation (3.9) does not
have a zero intersect and decays at a slower rate. Limited data
available on fourth-order correlation measurements 17seem in

better agreement with the MGBK model. However, this
difference may practically be insignificant in noise
prediction. An interested reader may find more information
on the second-order lateral correlation in a book by
Townsend 18.
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Aside from _23' which is now set equal to 0.0, the two

models appear similar. The normalized axial cross
correlation functions are:

I Dq,(x, tl) Dq,(x +__l,t2).l =

--_tl Dr2 I exp{- al_ll

--en 2 (_1 -- _ / a)2}' (3.11)

Ii111(41,v) = exp - 2 +T --/)'/2(_ 1 --_/O_) 2

witha=(g/UT:).

(3.12)

Using Tam's constants (g = c _:K[ 312 / _, _7 s, = C T K[ / _ ,

c = 0.256, c = 0.233) one finds a = (c,/c)(tc °5 / U).

Let's set U equal to the convection velocity 0.65 U,. In the

more energetic parts of the flow (mixing layer) we chose

(to °5 / Uj) _--0.12, and find a _--0.20.

Figure 9b shows Tam's correlation coefficient (3.11) and

the MGBK model (3.12), with O" = 0. The effect of small

parameter O" is shown in figure 9c. Aside from the slight

difference described above in comparing the lateral

correlations, the two models exhibit similar features.

Next, the spectral shape functions are compared.

3.3. Spectral Function

The MGBK spectral function was written earlier in a

moving frame as a Fourier transform of the temporal

function g2 (_), multiplied by the non-compactness factor.

In a fixed frame variable _: appears in ( 41 -- U_" ), hence

the spatial function needs to be include in the integration.

However, with a simple transformation _,, = _- UT (see

1.6), the spectral shape function (2.24) is recovered. For

comparison with Tam's spectra we now let T o = 2T s and

relate G.to _ (see 3.8).

/_l(gor,) = K1[0_41 + (_.)2 ] N(kg),

41 + (_")2 KI(O- )

= go(1 - M c cos 0).

(3.13)

N(kg) for model (a) is given in (2.20).

small one finds

1
gim F1 N(kQ .
_.o l+(_v ) 2

As o- become

(3.14)

Following Eq. 33 [Ref. 8], Tam and Auriault's spectral

function F2, is written for a unit volume of turbulence at

[41[
F2(goL) = ff pa(y,2,--go)pa(y+_,2,+go)d_exp{

en2 [(41 - gv) 2 2 . ---- + 42_]+ tgor}dr d4. (3.15)
e;

Here p, is the direct Green's function, which is obtained

from switching source and observer locations in the adjoint

problem. As was done earlier, the product of the Green's

functions is approximated as the magnitude at the center of

the correlation volume multiplied by a proper phase

pa(_,Y,--go)pa(_ + _,2,+go) [p_(y,2,_go)]2 _k._= e . (3.16)

Phase factor/_. _ should not carry a preferred direction since

rays are emitted at all angles and separation vector _ may

also take any direction. It follows

/_2 (Oil's)= [iOa(y,._,--O))[ 2 f fexp{- 141[ _2 [(41--U_') 2

+ 423]+tk.4 +igor}dr d_,

or upon integrating over/:

f2(go_," )=lp_(y,._,-go)12exp(----L1 (gog*) 2 {exp{ 1411
" k _n 2 2U Uv

en2 42 0.)41

7 23-i--+ik'4}d4"
, U

As before, make a coordinate transformation with respect to

dummy variable _ such that _1 aligns with /7 (i.e.

/_._ = k_l ). The component of U in direction of/¢ becomes

U o = Ucos0.

, =k(y,x,-go)[ 2e, exp -7-f-7( ) 642643

x i exp{- ea'41 en2 4_ go
o UoT, - }c°s[(_oo - k)41 ] d41"

Next transition to polar coordinates _ = (41, rcos_o, r sin_o)

_2 (goT,)= [p_ (_, ._,_go)[2 2_e 2 g_2,/g,

fn 2 1 + ((or - UoLk) 2

xexp(- 1 (gog,)2

k. fn2 2U

(3.17)
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Expression (3.17) is now normalized to obtain the spectral
shape function. We also take out the magnitude of the
Green's from the spectral function (as was done in 3.13).
For a compact eddy (k = 0)

_(goz- ) - 1 ( 1 (0)_*)2 /l+(70r)eeXp en2 7 J '

and

?2(cot ) =

(compact eddy) (3.18)

1 exp(_ 1 ((0_)2/
U _. _n2 2U J'

1+ (cots)2 (1 - --cos 0) 2
a

(non-compact eddy). (3.19)

This result is the same as that reported by Tam and
Auriault, but was derived without resorting to the following
approximation, which was suggested in Ref. [8].

p_ (y, ._,--O))p_ (y q- _, ._,q-O)) -_ ]p_ (y, ._,--0))] 2exp{ik_l cos 0 }

At this point let's compare (3.19) with the MGBK shape
function (model a) at 90° emission angle. Figure 10 shows

comparisons with gs / U_'s = 0.20 as was selected earlier.

The MGBK spectral shape (with O- = 0.20) agrees quite

favorably with Tam's results at U/a m = 0.325 and 0.65

as shown in figure 10a and 10b, corresponding to jet exit

velocity of Uj /am = 0.50 and Uj /am = 1.0

respectively.

It is noted that in comparing the above spectral shape
functions, we have deliberately dropped the wave number

power k 4 from MGBK model (see 2.18), and k 2 from

Tam's model. In the MGBK approach, factor k 4 appears
when two spatial derivatives and one convective derivative
are transferred from source to the Green's function. Tam

and Auriault, on the other hand, maintain that convective
derivative is included in their source modeling. As a result

the Green's function Pa remains of the order of k (see

equation (28) of Ref [15]), which incidentally indicates that

source qs should be of quadrupole type. With the
convective derivative now hidden in the source, the power

spectral function becomes proportional to k 2.

Morris and Farassat 19 described this in more detail in a

recent paper and suggested that a consistent approach

should result in - k 4 for both MGBK and Tam's analysis.

Figure 11 shows the MGBK predictions for Mach 0.5 cold
jet using model (a) and a spectral shape function that
matches that of Tam and Auriault's (curve 1). Predictions

obtained by replacing the k 4 wave-number factor by k 2 (as
in Tam and Auriault approach) are also shown. In doing so,
some minor adjustments had to be made in the calibration
constant related to the source characteristic frequency to
persevere the location of the peak spectra. The noise

spectrum naturally becomes broader with the k2factor
(compare 1 and 2), and improvements are noticed at both
ends.

Additional high-frequency improvement could be gained by

simply removing the atmospheric attenuation built in the
MGBK code from predictions and implying that it is built
into the source model (as was done in spectral predictions of
Ref. 8 at R/D = 100). However, predicted noise spectrum
should account for atmospheric attenuation. This amounts to
attenuating the high-frequency noise depending on the
observer distance and atmospheric conditions (i.e., relative
humidity and ambient temperature). Noise measurements
usually reflect the atmospheric attenuation. Figure 11 (curve
3) shows the significance of atmospheric loss on predicted
spectra. Although excellent agreement with data is thereby
obtained, two very questionable steps were taken to predict a
better spectrum.

As was shown earlier (Fig. 7), good agreement with data
could be achieved by selecting an exponential spatial function
(model b) in place of the Gaussian function.

4. Concluding Remarks
In the preceding discussions, we examined alternative model
representations for the two-point space-time correlation
appearing in physics-based jet noise prediction
methodologies. It was argued that a proper representation of
the source, consistent with the observations and accepted
fundamentals related to turbulence statistics, should improve
prediction of the flow-generated noise in the framework of
Lilley's equation. The discussions centered on noise from
small-scales of motion and at 90° observer-angle. The main
result of the study was described in Fig. 7. It was shown that
an exponential spatial function, with source non-compactness
included, predicts a broader spectrum relative to a Gaussian
function. The effect of turbulence anisotropy may readily be
accounted for by selecting model (d) of section 2.2 as a non-
compact source.

Away from 90°, mean-flow refraction effects as well as
convective amplification due to source motion become

crucial in capturing the peak directivity that occurs near the
down-stream axis. A high-frequency approximation offers an
analytical solution to the Green's function, but comparisons
of section 3.1 indicate that it might not be an appropriate
approximation at small Strouhal numbers.

A numerically computed Green's function 15provides extra

flexibility at low frequency, at the cost of added numerical
intensity.
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Appendix A
Directivity factor for various quadrupole source
components (in the absence of mean density gradient) is

COS 4 0 ( _'_)41SI2__

a1111 = (1- M----_o--s0) 4 a M

]_11,

g2(r) COS 2 0

a1122 = (R) 4I SI2/_12,

2(1-M cosO) 4 aM

4 2

15/2222 = (3/8)g4(F)(-) ]S] /_22'

aM

4 _ 4 2

a2233 = (1/8)g (F)(--)ISI /_23.

aM

The shielding function is

(1- M ° cos0)e(a /a) 2 --COS 2 0
ge(r,O) =

(1- M c COS0) 2

It should be noted that correlation coefficients aiy all

have a Doppler-factor power of 4 in the denominator,

which when multiplied by (£2/am)4 makes aiy

proportional to the factctor k 4 . Shielding coefficients

fl_j depend on the number of turning points of g2(r,O)

as well as location of source point ro with respect to that of

the turning point r. For example, when there is only one

turning point and ro < 1", we have

f_r_

fli, - exp{-2--ff-- I _f(-ge (r)ldr} .
g

Appendix B
For a homogeneous isotropic turbulence correlation
coefficients are related to the axial components with either
Gaussian or exponential spatial functions

f (_) = exp(__2 / g2) and f (_) = exp(-Jr_ / g) :

12222 z I3333 z 11111

1

11122 = 11133= 12233 = 8 Ii111 ,

7 1
I1212 = 11313 = 12323 =_ 1111 "

These relations hold for compact as well as non-compact
source models.
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in a high-subsonic jet. Eq. (2.14) with Exponential function (solid line); Gaussian (dashed-line).
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Fig. 9c MGBK cross correlation function (Eq. 3.12)
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Fig. 9b Comparison of the axial cross-correlation coefficients
of Tam et al. and MGBK. (i) Tam's model (Eq. 3.11);
(ii) MGBK model (Eq. 3.12) with O" -- 0.
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